GeometryEditor Crash Course

July 11, 2007
Xun Lai
Department of Computer Science
Kent State University

GeometryEditor

- Previously called GeoSVG
- A Dynamic Geometry System to explore mathematical concepts
- A Web-based system
- No software installation required
- (for developers) A package for building more sophisticated Web applications that need mathematical drawing support
- GeoSite, BBS, DMAD and so on...

Working Environment

- Purely based on HTML, SVG, and javascript
- Full Features (menu, toolbar, the graphical area, and interaction between SVG and HTML) work
- on Firefox on all platforms
- on Windows IE with ASV
- on Opera (partially tested)
- Only graphical area works
- on Mac Safari with ASV
- on Netscape on all platforms with ASV

What a manipulative looks like

- Menu \& Toolbar
- An author needs to customize what menu items and toolbar buttons to be available to users
- Graphical area (canvas)
- An author can add objects to the canvas

What a manipulative looks like

Objects you can author

- Implemented
- Point
- Line/ray/segment
- Circle
- Polygon
- Scratch
- Coordinate System
- Function graph
- Locus
- Plain text
- User input
- Button
- Measurement
- To be implemented
- Vector, regular polygon, arc and conics
- Slide bar

Objects you can author

Menu Introduction:

Draw Menu

- Once a drawing tool in the Draw menu is selected, you can create objects by clicking and moving the mouse
- Select or move object(s)
- Pencil
- Free Point
- Line/Ray/Segment
- Compass Circle
- Macro

Draw Menu: Macro Support

- Grouping several steps as one new tool
- Objects involved with a macro are divided into
- Givens
- Selected by a user from an object on the canvas
- Automatically generated
- Associated with an object on the canvas (to be finished)
- Results
- Descendents of the givens
- A macro can come from a data string or a URL
- A macro can be saved with a manipulative
- Examples

Menu Introduction:

Create Menu

- With some objects selected, you can define a construction, in which one or more new objects will be created.
- MidPoint of a segment
- Circle by a center and a segment
- Parallel/Perpendicular line
- Polygon
- Point on a line/circle/canvas
- Perpendicular Point (the foot of the altitude, or perpendicular foot)
- Parallelogram Point

Create Menu

Things you need to know: Two types of operations

- Select an operation from the menu or toolbar, and then begin to draw on the canvas
- Select one or more objects, and then go to the menu or toolbar to apply an operation to it (them)
- Sometimes, the operation may invoke a dialog

Things you need to know:

 Menu and Toolbar Enabling and Disabling- Menu items and toolbar buttons are enabled or disabled automatically based on the objects selected and the current system status

Things you need to know: The property dialog

- To inspect the relations among objects via the parents/children relation
- To see how an object was named and labeled by the system, or to label it yourself
- To customize properties of an object
- To check if your construction is correct
- To study how a manipulative was created

Property Dialog - to inspect relations among objects

Property Dialog - to customize properties of an object

Things you need to know: Naming and labeling of objects

- Naming
- The name of an object is used whenever a description of the object is needed
- In the property dialog shown in the previous slide
- In an mathematical expression
- An object is usually named in this way: object type plus object label
- If an object has not been labeled, an object will be named like "Circle \#3", "Polygon \#2". The index numbers are assigned to objects of the same type in their creation order

Things you need to know: Naming and labeling of objects (cont.)

- Labeling
- You can label the object yourself.
- If an object has not been labeled, when the object is measured, a label will be automatically assigned.
- For example, labels of circles will be assigned as c1, c2, and so on

Menu Introduction:
 Measure Menu

- Measurements
- Line length, and slope
- Circle radius, diameter, circumference, and area
- Polygon perimeter, and area
- Distance between a point and a point/line/circle
- Angle
- Coordinates, abscissa, and ordinate

Measure Menu

Menu Introduction: Transform Menu

- Possible transformations
- Translation
- $\mathrm{x}-\mathrm{y}$ direction translation
- Polar (angle/distance) translation
- Vector translation
- Rotation around a center
- Reflection about a mirror
- Dilation about a center
- Most of the transformation operations will invoke a dialog, which will invoke the calculator

Transform Menu

Dialogs invoked by dilation

Property of the dilated triangle

Things you need to know: The dynamic calculator

- The dynamic calculator can be used to
- define a function
- define a calculation
- set numeric properties of objects
- Depth of an iteration
- Coordinates of a point
- Unit length of an axis
- Properties in a transformation
- Dilation factor of a synchronized copy

Calculator for defining a function

Calculator for setting the depth of an iteration

Things you need to know: The dynamic calculator (cont.)

- The calculator can form very meaningful expression by referring to the names or labels of objects
- An expression is unit sensitive
- $9 \mathrm{~cm}+3$ inches will give you 10.18inches
- Distance units: cm/inches/pixels
- Angle units: radians/degrees
- By clicking an object on the canvas, an author can insert the object into the expression

Things you need to know: The dynamic calculator (cont.)

- An expression is entered in infix format, and it will be parsed and evaluated immediately. Invalid expression won't be allowed.
- The expression for a numeric property of an object can be changed even after the object is created.

Things you need to know: The dynamic calculator (cont.)

- The calculator provides lots of built-in functions
- sin, cos, tan, abs, sqrt, log, In, arcsin, arccos, and arctan
- max, min, avg, and sum of a sequence of numbers
- sgn, fac, round, and trunc
- pick that is similar to the "? :" operator
- The calculator can handle boolean expressions

Things you need to know:

 Interaction between the canvas and a dialog- Some dialogs expect the user to click an object on the canvas as an input
- Calculator as you have seen already
- Synchronized copy dialog
- Iteration dialog

Menu Introduction: Graph Menu

- Coordinate system
- Point plotting
- Function definition and plotting

Graph Menu: Coordinate System

- Usually, you just click OK in the dialog to create a new coordinate system
- You can also
- Configure the unit length of an axis controlled by another axis in another coordinate system
- Specify value per unit
- Specify the range of an axis

Origin $\mid x$ Axis \mid y Axis
Unit LengthIndependentSame as x AxisDetertrinted by another Unit Foint:Determined by an expression:
Expression:
Calculator Walue:

Value Per Unit
Walue per urit: 1

- Range

Maximum value: \square

Cancel OK

Done

> The coordinate system dialog

Menu Introduction:

Edit Menu

- Undo/Redo/Delete
- Unlimited undo and redo for
- Object(s) creation
- Object(s) deletion
- Object(s) movement
- And some other operations
- Properties
- Properties of an object
- Redefine ${ }^{* * *}$
- Preferences
- Global properties of a manipulative
- Menu Customization/Toolbar Customization

Menu Introduction:

Edit Menu (cont.)

- Line style dialog
- for setting the style of a geometric object
- Color palette
- for setting the color of a geometric object
- Show/hide object(s)
- Set object(s) manipulable or NOT manipulable

Edit Menu

Line Style Dialog and Color Palette

ititp://Iocaliost - Preferences - Mozilla... $\square \square \times$

Units Color

Atigle:	Units		Precision	
	degrees	\checkmark	hundredths	
Distance:	inches	\checkmark	hundredths	\checkmark
Other (Slope, Radio...)			hundredths	

Cancel OK

Done

The preferences dialog

Menu Introduction: Objects Menu

- Action button control
- Show/Hide
- Movement
- Presentation
- Circulation Events
- Animation
- User input control
- Text block
- Rulers, protractor, and grids

Menu Introduction:

Advanced Menu

- Advanced constructions
- Calculation
- Synchronized Copy
- Locus
- Iteration
- They are advanced either because
- the mathematics or the logic behind is sophisticated, or
- the dialog assisting authoring is quite complex

Advanced Menu: Calculation

- Calculation
- The calculator will be invoked to define an expression in terms of other calculations, measurements, and user input controls

Advanced Menu: Synchronized Copy

- Synchronized copy dialog
- The mathematical relations among copied objects are always the same as the source objects

One triangle is a synchronized copy of another triangle

The dialog for making a synchronized copy

Advanced Menu:

Iteration

- An iteration rule must be specified
- How a pre-image object is mapped to an image object (Point A mapped to mid-point C)
- The descendents structure under the pre-image object will be duplicated for the image object (point C takes the place of point A, and the whole descendents tree will be generated for point C)

File	Edit	Display	Tools	Construct	Transform	Measure	Graph	Statistics

A simple iteration example: point A mapped to mid-point C

The dependency tree of the objects in the previous slide

A complicated iteration example

Advanced Menu: Locus

- Mathematically, a locus is a collection of points which share a property. (Wikipedia)
- Three components
- Driver
- Path: that the driver will move along
- Driven: must be a descendent of the driver
- Visually, a locus is a collection of all the locations the driven goes through

A simple locus example: C is the mid-point of segment $A B$, and B is on the circle c1. When point B moves around c1, the trace of C forms a locus

A locus example: the locus of the center of the circle tangent to two circles

Menu Introduction:

Statistics Menu

- Basic statistics supports
- Min/Max, Median, Q1/Q3, and Count of a sequence of measurements of user inputs

Things you need to know: Menu and Toolbar Customization

- Each menu item functionality can also be put on the toolbar
- The menu and toolbar can be customizable

Menu Customization

- 「 File
- 「 Start Over
－Г Debug
－ГEdit
－「 Undo
－Г Redo
- 「 Delete
- 「Action Button Show
－Г Action Button Hide
－ГAction Button Movement
－ГAction Button Presentation
－ГAction Button Circular Events
－ Action Button Animation
－ГStop Movement
Use pre－defined menus as template：
Please select 1
Cancel
OK

Done
Menu Customization Dialog

Status of GeometryEditor

- More features need to be finished, however,
- The first trial version can be announced once a simple user account management is done on the GeoSite
- A progress table
- http://www.cs.kent.edu/~xlai/geosite/GeometryEditor/doc/20 07/tasks.html
- although it can be understood only by me
- User manual and training materials needed

Features to be finished

- Envelops
- Arcs
- Conics
- Integration of MathML into the calculator
- Dialog showing construction steps
- Dialog showing macro properties
- Dialog for filtering iterated objects
- Tabulated data for an iteration
- Iterations for multiple mappings
- Some other small features

System Composition

- Graphical core (jsmin-ed)
- $240 \mathrm{~KB}, 16,000$ lines of codes, 110 classes
- GeometryEditor.js: a layer between the graphical core and a client Web application
- $50 \mathrm{~KB}, 2,000$ lines of codes
- Around 30 types of dialogs and their related Javascript files
- Open source libraries used:
- Dynarch.com DHTML menus (50KB integrated into GeometryEditor.js)
- FCKeditor (used in GeoSite)

Thank you!

